
Security

Objectives

No one can deny the importance of security in data communications and networking.
Security in networking is based on cryptography, the science and art of transforming
messages to make them secure and immune to attack. Cryptography can provide several
aspects of security related to the interchange of messages through networks. These aspects
are confidentiality, integrity, authentication, and nonrepudiation.

Cryptography can provide confidentiality, integrity, authentication,
and nonrepudiation of messages.

Cryptography can also be used to authenticate the sender and receiver of the message
to each other. For example, a user who needs access to the resources of a system must
first be authorized. We call this aspect entity authentication.

Cryptography can also provide entity authentication.

In this part of the book, we first introduce cryptography without delving into the
mathematical foundations of this subject. We then briefly explore security aspects as
applied to a network. Finally, we discuss some common protocols that implement security
aspects at the upper three layers of the Internet model.

Part 7 of the book is devoted to different security aspects.

Chapters

This part consists of three chapters: Chapters 30, 31, and 32.



Chapter 30

Chapter 30 is a brief discussion of a broad topic called cryptography. Although cryptography,
which is based on abstract algebra, can itself be a complete course, we introduce it here
briefly and avoid references to abstract algebra as much as possible. We give just enough
background information as a foundation for the material in the next two chapters.

Chapter 31

Chapter 31 is an introduction, and motivation, for the broad topic of network security.
We discuss selected issues that are often encountered when dealing with communications
and networking problems.

Chapter 32

Chapter 32 briefly discusses the applications of topics discussed in Chapters 30 and 31
to the Internet model. We show how network security and cryptography can be used in
three upper layers of the Internet model.



CHAPTER 30

Cryptography

Network security is mostly achieved through the use of cryptography, a science based
on abstract algebra. In this chapter, we briefly discuss the cryptography suitable for the
scope of this book. We have tried to limit our discussion of abstract algebra as much as
we could. Our goal is to give enough information about cryptography to make network
security understandable. The chapter opens the door for studying network security in
Chapter 31 and Internet security in Chapter 32.

30.1 INTRODUCTION
Let us introduce the issues involved in cryptography. First, we need to define some terms;
then we give some taxonomies.

Definitions

We define some terms here that are used in the rest of the chapter.

Cryptography

Cryptography, a word with Greek origins, means "secret writing." However, we use the
term to refer to the science and art of transforming messages to make them secure and
immune to attacks. Figure 30.1 shows the components involved in cryptography.

Figure 30.1 Cryptography components
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Plaintext and Ciphertext

The original message, before being transformed, is called plaintext. After the message
is transformed, it is called ciphertext. An encryption algorithm transforms the plain­
text into ciphertext; a decryption algorithm transforms the ciphertext back into plain­
text. The sender uses an encryption algorithm, and the receiver uses a decryption
algorithm.

Cipher

We refer to encryption and decryption algorithms as ciphers. The term cipher is also
used to refer to different categories of algorithms in cryptography. This is not to say
that every sender-receiver pair needs their very own unique cipher for a secure commu­
nication. On the contrary, one cipher can serve millions of communicating pairs.

Key

A key is a number (or a set of numbers) that the cipher, as an algorithm, operates on. To
encrypt a message, we need an encryption algorithm, an encryption key, and the plaintext.
These create the ciphertext. To decrypt a message, we need a decryption algorithm, a
decryption key, and the ciphertext. These reveal the original plaintext.

Alice, Bob, and Eve

In cryptography, it is customary to use three characters in an information exchange
scenario; we use Alice, Bob, and Eve. Alice is the person who needs to send secure
data. Bob is the recipient of the data. Eve is the person who somehow disturbs the com­
munication between Alice and Bob by intercepting messages to uncover the data or by
sending her own disguised messages. These three names represent computers or pro­
cesses that actually send or receive data, or intercept or change data.

Two Categories
We can divide all the cryptography algorithms (ciphers) into two groups: symmetric­
key (also called secret-key) cryptography algorithms and asymmetric (also called
public-key) cryptography algorithms. Figure 30.2 shows the taxonomy.

Figure 30.2 Categories ofcryptography
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Symmetric·Key Cryptography

In symmetric-key cryptography, the same key is used by both parties. The sender uses
this key and an encryption algorithm to encrypt data; the receiver uses the same key and
the corresponding decryption algorithm to decrypt the data (see Figure 30.3).

Figure 30.3 Symmetric-key cryptography

Shared secret key

1-- --- - -- - - -- - - -11----------- -- --I
1 I
1 I

l t
I------------~ Decryption

L............__-' Ciphertext

Bob
r

- -
Plaintext

In symmetric·key cryptography, the same key is used by the sender
(for encryption) and the receiver (for decryption).

The key is shared.

Asymmetric-Key Cryptography

In asymmetric or public-key cryptography, there are two keys: a private key and a public
key. The private key is kept by the receiver. The public key is announced to the public.
In Figure 30.4, imagine Alice wants to send a message to Bob. Alice uses the public key
to encrypt the message. When the message is received by Bob, the private key is used to
decrypt the message.

Figure 30.4 Asymmetric-key cryptography
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In public-key encryption/decryption, the public key that is used for encryption is
different from the private key that is used for decryption. The public key is available to
the public;' the private key is available only to an individual.
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Three Types ofKeys

The reader may have noticed that we are dealing with three types of keys in cryptography:
the secret key, the public key, and the private key. The first, the secret key, is the shared
key used in symmetric-key cryptography. The second and the third are the public
and private keys used in asymmetric-key cryptography. We will use three different icons
for these keys throughout the book to distinguish one from the others, as shown in
Figure 30.5.

Figure 30.5 Keys used in cryptography
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Comparison

Let us compare symmetric-key and asymmetric-key cryptography. Encryption can be
thought of as electronic locking; decryption as electronic unlocking. The sender puts
the message in a box and locks the box by using a key; the receiver unlocks the box
with a key and takes out the message. The difference lies in the mechanism of the locking
and unlocking and the type of keys used.

In symmetric-key cryptography, the same key locks and unlocks the box. In
asymmetric-key cryptography, one key locks the box, but another key is needed to
unlock it. Figure 30.6 shows the difference.

Figure 30.6 Comparison between two categories ofcryptography
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30.2 SYMMETRIC-KEY CRYPTOGRAPHY
Symmetric-key cryptography started thousands of years ago when people needed to
exchange secrets (for exanlple, in a war). We still mainly use symmetric-key cryptography
in our network security. However, today's ciphers are much more complex. Let us first
discuss traditional algorithms, which were character-oriented. Then we discuss the modem
ones, which are bit-oriented.

Traditional Ciphers

We briefly introduce some traditional ciphers, which are character-oriented. Although
these are now obsolete, the goal is to show how modern ciphers evolved from them. We
can divide traditional symmetric-key ciphers into two broad categories: substitution
ciphers and transposition ciphers, as shown in Figure 30.7.

Figure 30.7 Traditional ciphers

Transposition
ciphers

Substitution Cipher

A substitution cipher substitutes one symbol with another. If the symbols in the plain­
text are alphabetic characters, we replace one character with another. For example, we
can replace character A with D, and character T with Z. If the symbols are digits (0 to
9), we can replace 3 with 7, and 2 with 6. Substitution ciphers can be categorized as
either monoalphabetic or polyalphabetic ciphers.

A substitution cipher replaces one symbol with another.

In a monoalphabetic cipher, a character (or a symbol) in the plaintext is always
changed to the same character (or symbol) in the ciphertext regardless of its position in
the text. For example, if the algorithm says that character A in the plaintext is changed
to character D, every character A is changed to character D. In other words, the relation­
ship between characters in the plaintext and the ciphertext is a one-to-one relationship.

In a polyalphabetic cipher, each occurrence of a character can have a different
substitute. The relationship between a character in the plaintext to a character in the
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ciphertext is a one-to-many relationship. For example, character A could be changed to
D in the beginning of the text, but it could be changed to N at the middle. It is obvious
that if the relationship between plaintext characters and ciphertext characters is one-to­
many, the key must tell us which of the many possible characters can be chosen for
encryption. To achieve this goal, we need to divide the text into groups of characters
and use a set of keys. For example, we can divide the text "THISISANEASYTASK"
into groups of 3 characters and then apply the encryption using a set of 3 keys. We then
repeat the procedure for the next 3 characters.

Example 30.1

The following shows a plaintext and its corresponding ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLO
Ciphertext: KHOOR

Solution
The cipher is probably monoalphabetic because both occurrences of L's are encrypted as O's.

Example 30.2

The following shows a plaintext and its corresponding ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLO
Ciphertext: ABNZF

Solution
The cipher is not monoalphabetic because each occurrence of L is encrypted by a different char­
acter. The first L is encrypted as N; the second as Z.

Shift Cipher The simplest monoalphabetic cipher is probably the shift cipher. We
assume that the plaintext and ciphertext consist of uppercase letters (A to Z) only. In
this cipher, the encryption algorithm is "shift key characters down," with key equal to
some number. The decryption algorithm is "shift key characters up." For example, if the
key is 5, the encryption algorithm is "shift 5 characters down" (toward the end of the
alphabet). The decryption algorithm is "shift 5 characters up" (toward the beginning of
the alphabet). Of course, if we reach the end or beginning of the alphabet, we wrap
around.

Julius Caesar used the shift cipher to communicate with his officers. For this reason,
the shift cipher is sometimes referred to as the Caesar cipher. Caesar used a key of 3
for his communications.

The shift cipher is sometimes referred to as the Caesar cipher.

Example 30.3

Use the shift cipher with key = 15 to encrypt the message "HELLO."
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Solution
We encrypt one character at a time. Each character is shifted 15 characters down. Letter H is
encrypted to W. Letter E is encrypted to T. The first L is encrypted to A. The second L is also
encrypted to A. And 0 is encrypted to D. The cipher text is WTAAD.

Example 30.4

Use the shift cipher with key =15 to decrypt the message "WTAAD."

Solution
We decrypt one character at a time. Each character is shifted 15 characters up. Letter W is
decrypted to H. Letter T is decrypted to E. The first A is decrypted to L. The second A is
decrypted to L. And, finally, D is decrypted to O. The plaintext is HELLO.

Transposition Ciphers

In a transposition cipher, there is no substitution of characters; instead, their locations
change. A character in the first position of the plaintext may appear in the tenth position
of the ciphertext. A character in the eighth position may appear in the first position. In
other words, a transposition cipher reorders the symbols in a block of symbols.

A transposition cipher reorders (permutes) symbols in a block of symbols.

Key In a transposition cipher, the key is a mapping between the position of the symbols
in the plaintext and cipher text. For example, the following shows the key using a block
of four characters:

Plaintext:
Ciphertext:

2 4 1 3
123 4

In encryption, we move the character at position 2 to position 1, the character at
position 4 to position 2, and so on. In decryption, we do the reverse. Note that, to be
more effective, the key should be long, which means encryption and decryption of long
blocks of data. Figure 30.8 shows encryption and decryption for our four-character

Figure 30.8 Transposition cipher
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block using the above key. The figure shows that the encryption and decryption use the
same key. The encryption applies it from downward while decryption applies it upward.

Example 30.5

Encrypt the message "HELLO MY DEAR," using the above key.

Solution
We first remove the spaces in the message. We then divide the text into blocks of four characters.
We add a bogus character Z at the end of the third block. The result is HELL OMYD EARZ. We
create a three-block ciphertext ELHLMDOYAZER.

Example 30.6

Using Example 30.5, decrypt the message "ELHLMDOYAZER".

Solution
The result is HELL OMYD EARZ. After removing the bogus character and combining the char­
acters, we get the original message "HELLO MY DEAR."

Simple Modern Ciphers
The traditional ciphers we have studied so far are character-oriented. With the advent of
the computer, ciphers need to be bit-oriented. This is so because the information to be
encrypted is not just text; it can also consist of numbers, graphics, audio, and video data.
It is convenient to convert these types of data into a stream of bits, encrypt the stream,
and then send the encrypted stream. In addition, when text is treated at the bit level, each
character is replaced by 8 (or 16) bits, which means the number of symbols becomes 8
(or 16). Mingling and mangling bits provides more security than mingling and mangling
characters. Modem ciphers use a different strategy than the traditional ones. A modern
symmetric cipher is a combination of simple ciphers. In other words, a modern cipher
uses several simple ciphers to achieve its goal. We first discuss these simple ciphers.

XOR Cipher

Modern ciphers today are normally made of a set of simple ciphers, which are simple
predefined functions in mathematics or computer science. The first one discussed here
is called the XOR cipher because it uses the exclusive-or operation as defined in computer
science. Figure 30.9 shows an XOR cipher.

Figure 30.9 XOR cipher
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An XOR operation needs two data inputs plaintext, as the first and a key as the sec­
ond. In other words, one of the inputs is the block to be the encrypted, the other input is
a key; the result is the encrypted block. Note that in an XOR cipher, the size of the key,
the plaintext, and the ciphertext are all the same. XOR ciphers have a very interesting
property: the encryption and decryption are the same.

Rotation Cipher

Another common cipher is the rotation cipher, in which the input bits are rotated to
the left or right. The rotation cipher can be keyed or keyless. In keyed rotation, the value of
the key defines the number of rotations; in keyless rotation the number of rotations is fixed.
Figure 30.10 shows an example of a rotation cipher. Note that the rotation cipher can be
considered a special case of the transpositional cipher using bits instead of characters.

Figure 30.10 Rotation cipher
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The rotation cipher has an interesting property. If the length of the original stream
is N, after N rotations, we get the original input stream. This means that it is useless to
apply more than N - 1 rotations. In other words, the number of rotations must be between
1 and N-1.

The decryption algorithm for the rotation cipher uses the same key and the opposite
rotation direction. If we use a right rotation in the encryption, we use a left rotation in
decryption and vice versa.

Substitution Cipher: S-box

An S-box (substitution box) parallels the traditional substitution cipher for characters.
The input to an S-box is a stream of bits with length N; the result is another stream of
bits with length M. And Nand M are not necessarily the same. Figure 30.11 shows an
S-box.

The S-box is normally keyless and is used as an intermediate stage of encryption
or decryption. The function that matches the input to the output may be defined mathe­
matically or by a table.

Transposition Cipher: P-box

A P-box (permutation box) for bits parallels the traditional transposition cipher for char­
acters. It performs a transposition at the bit level; it transposes bits. It can be implemented
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Figure 30.11 S-box
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M output bits

in software or hardware, but hardware is faster. P-boxes, like S-boxes, are nonnally key­
less. We can have three types of pennutations in P-boxes: the straight permutation,
expansion permutation, and compression permutation as shown in Figure 30.12.

Figure 30.12 P-boxes: straight, expansion, and compression
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A straight permutation cipher or a straight P-box has the same number of inputs as
outputs. In other words, if the number of inputs is N, the number of outputs is also N. In
an expansion pennutation cipher, the number of output ports is greater than the number
of input ports. In a compression pennutation cipher, the number of output ports is less
than the number of input ports.

Modern Round Ciphers
The ciphers of today are called round ciphers because they involve multiple rounds,
where each round is a complex cipher made up of the simple ciphers that we previously
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described. The key used in each round is a subset or variation of the general key called the
round key. If the cipher has N rounds, a key generator produces N keys, K b Kz, ..., KN ,

where K1 is used in round 1, K2 in round 2, and so on.
In this section, we introduce two modem symmetric-key ciphers: DES and AES.

These ciphers are referred to as block ciphers because they divide the plaintext into
blocks and use the same key to encrypt and decrypt the blocks. DES has been the de
facto standard until recently. AES is the formal standard now.

Data Encryption Standard (DES)

One example of a complex block cipher is the Data Encryption Standard (DES). DES
was designed by IBM and adopted by the U.S. government as the standard encryption
method for nonmilitary and nonclassified use. The algorithm encrypts a 64-bit plaintext
block using a 64-bit key, as shown in Figure 30.13.

Figure 30.13 DES
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DES has two transposition blocks (P-boxes) and 16 complex round ciphers (they are
repeated). Although the 16 iteration round ciphers are conceptually the same, each uses
a different key derived from the original key.

The initial and final permutations are keyless straight permutations that are the
inverse of each other. The permutation takes a 64-bit input and permutes them according
to predefined values.
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Each round of DES is a complex round cipher, as shown in Figure 30.14. Note that
the structure of the encryption round ciphers is different from that of the decryption one.

Figure 30.14 One round in DES ciphers
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DES Function The heart of DES is the DES function. The DES function applies a
48-bit key to the rightmost 32 bits Ri to produce a 32-bit output. This function is made
up of four operations: an XOR, an expansion permutation, a group of S-boxes, and a
straight permutation, as shown in Figure 30.15.

Figure 30.15 DES function
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Triple DES

Critics of DES contend that the key is too short. To lengthen the key, Triple DES or 3DES
has been proposed and implemented. This uses three DES blocks, as shown in Figure 30.16.
Note that the encrypting block uses an encryption-decryption-encryption combination of
DESs, while the decryption block uses a decryption-encryption-decryption combination.
Two different versions of 3DES are in use: 3DES with two keys and 3DES with three keys.
To make the key size 112 bits and at the same time protect DES from attacks such as the
man-in-the-middle attack, 3DES with two keys was designed. In this version, the first and
the third keys are the same (KeYl = KeY3)' This has the advantage in that a text encrypted by
a single DES block can be decrypted by the new 3DES. We just set all keys equal to KeYl'
Many algorithms use a 3DES cipher with three keys. This increases the size of the key
to 168 bits.

Figure 30.16 Triple DES
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Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) was designed because DES's key was too
small. Although Triple DES ODES) increased the key size, the process was too slow.
The National Institute of Standards and Technology (NIST) chose the Rijndael
algorithm, named after its two Belgian inventors, Vincent Rijmen and Joan Daemen,
as the basis of AES. AES is a very complex round cipher. AES is designed with three
key sizes: 128, 192, or 256 bits. Table 30.1 shows the relationship between the data block,
number of rounds, and key size.

Table 30.1 AES configuration

Size ofData Block Number ofRounds Key Size

10 128 bits

128 bits 12 192 bits

14 256 bits
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AES has three different configurations with respect
to the number of rounds and key size.

In this text, we discuss just the lO-round, 12S-bit key configuration. The structure and
operation of the other configurations are similar. The difference lies in the key generation.

The general structure is shown in Figure 30.17. There is an initial XOR operation
followed by 10 round ciphers. The last round is slightly different from the preceding
rounds; it is missing one operation.

Although the 10 iteration blocks are almost identical, each uses a different key
derived from the original key.

Figure 30.17 AES
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Structure of Each Round Each round of AES, except for the last, is a cipher with four
operations that are invertible. The last round has only three operations. Figure 30.18 is
a flowchart that shows the operations in each round. Each of the four operations used in
each round uses a complex cipher; this topic is beyond the scope of this book.

Other Ciphers

During the last two decades, a few other symmetric block ciphers have been designed and
used. Most of these ciphers have similar characteristics to the two ciphers we discussed in
this chapter (DES and AES). The difference is usually in the size of the block or key, the
number of rounds, and the functions used. The principles are the same. In order not to
burden the user with the details of these ciphers, we give a brief description of each.
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Figure 30.18 Structure ofeach round
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IDEA The International Data Encryption Algorithm (IDEA) was developed by Xuejia
Lai and James Massey. The block size is 64 and the key size is 128. It can be imple­
mented in both hardware and software.

Blowfish Blowfish was developed by Bruce Schneier. The block size is 64 and the
key size between 32 and 448.

CAST-128 CAST-128 was developed by Carlisle Adams and Stafford Tavares. It is a
Feistel cipher with 16 rounds and a block size of 64 bits; the key size is 128 bits.

ReS RCS was designed by Ron Rivest. It is a family of ciphers with different block
sizes, key sizes, and numbers of rounds.

Mode of Operation
A mode of operation is a technique that employs the modern block ciphers such as DES
andAES that we discussed earlier (see Figure 30.19).

Figure 30.19 Modes ofoperation for block ciphers
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Electronic Code Book

The electronic code book (ECB) mode is a purely block cipher technique. The plain­
text is divided into blocks of N bits. The ciphertext is made of blocks of N bits. The
value of N depends on the type of cipher used. Figure 30.20 shows the method.

Figure 30.20 ECB mode
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We mention four characteristics of this mode:

1. Because the key and the encryption/decryption algorithm are the same, equal blocks
in the plaintext become equal blocks in the ciphertext. For example, if plaintext
blocks 1, 5, and 9 are the same, ciphertext blocks I, 5, and 9 are also the same.
This can be a security problem; the adversary can guess that the plaintext blocks
are the same if the corresponding ciphertext blocks are the same.

2. If we reorder the plaintext block, the ciphertext is also reordered.

3. Blocks are independent of each other. Each block is encrypted or decrypted inde­
pendently. A problem in encryption or decryption of a block does not affect other
blocks.

4. An error in one block is not propagated to other blocks. If one or more bits are cor­
rupted during transmission, it only affects the bits in the corresponding plaintext
after decryption. Other plaintext blocks are not affected. This is a real advantage if
the channel is not noise-free.

Cipher Block Chaining

The cipher block chaining (CBC) mode tries to alleviate some of the problems in ECB
by including the previous cipher block in the preparation of the current block. If the cur­
rent block is i, the previous ciphertext block Ci- 1 is included in the encryption of block i.
In other words, when a block is completely enciphered, the block is sent, but a copy of it
is kept in a register (a place where data can be held) to be used in the encryption of the
next block. The reader may wonder about the initial block. There is no ciphertext block
before the first block. In this case, a phony block called the initiation vector (IV) is
used. Both the sender and receiver agree upon a specific predetermined IV. In other
words, the IV is used instead of the nonexistent CO, Figure 30.21 shows the CBC mode.

The reader may wonder about the decryption. Does the configuration shown in the
figure guarantee the correct decryption? It can be proven that it does, but we leave the
proof to a textbook in network security.
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Figure 30.21 CBC mode
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The following are some characteristics of CBC.

1. Even though the key and the encryption/decryption algorithm are the same, equal
blocks in the plaintext do not become equal blocks in the ciphertext. For example,
if plaintext blocks 1, 5, and 9 are the same, ciphertext blocks I, 5, and 9 will not be
the same. An adversary will not be able to guess from the ciphertext that two blocks
are the same.

2. Blocks are dependent on each other. Each block is encrypted or decrypted based on
a previous block. A problem in encryption or decryption of a block affects other
blocks.

3. The error in one block is propagated to the other blocks. If one or more bits are
corrupted during the transmission, it affects the bits in the next blocks of the plain­
text after decryption.

Cipher Feedback

The cipher feedback (CFB) mode was created for those situations in which we need
to send or receive r bits of data, where r is a number different from the underlying
block size of the encryption cipher used. The value of r can be 1, 4, 8, or any number of
bits. Since all block ciphers work on a block of data at a time, the problem is how to
encrypt just r bits. The solution is to let the cipher encrypt a block of bits and use only
the first r bits as a new key (stream key) to encrypt the r bits of user data. Figure 30.22
shows the configuration.

The following are some characteristics of the CFB mode:

1. If we change the IV from one encryption to another using the same plaintext, the
ciphertext is different.

2. The ciphertext Ci depends on both Pi and the preceding ciphertext block.

3. Errors in one or more bits of the ciphertext block affect the next ciphertext blocks.

Output Feedback

The output feedback (OFB) mode is very similar to the CFB mode with one difference.
Each bit in the ciphertext is independent of the previous bit or bits. This avoids error
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Figure 30.22 CFB mode
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propagation. If an error occurs in transmission, it does not affect the future bits. Note
that, as in CFB, both the sender and the receiver use the encryption algorithm. Note
also that in OFB, block ciphers such as DES or AES can only be used to create the key
stream. The feedback for creating the next bit stream comes from the previous bits of
the key stream instead of the ciphertext. The ciphertext does not take part in creating
the key stream. Figure 30.23 shows the OFB mode.

Figure 30.23 OFB mode
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The following are some of the characteristics of the OFB mode.

1. If we change the IV from one encryption to another using the same plaintext, the
ciphertext will be different.

2. The ciphertext Ci depends on the plaintext Pi'

3. Errors in one or more bits of the ciphertext do not affect future ciphertext blocks.
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30.3 ASYMMETRIC-KEY CRYPTOGRAPHY
In the previous sections, we discussed symmetric-key cryptography. In this section we
introduce asymmetric-key (public key cryptography). As we mentioned before, an
asymmetric-key (or public-key) cipher uses two keys: one private and one public. We
discuss two algorithms: RSA and Diffie-Hellman.

RSA
The most common public key algorithm is RSA, named for its inventors Rivest, Shamir,
and Adleman (RSA). It uses two numbers, e and d, as the public and private keys, as
shown in Figure 30.24.

Figure 30.24 RSA
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The two keys, e and d, have a special relationship to each other, a discussion of this
relationship is beyond the scope of this book. We just show how to calculate the keys
without proof.

Selecting Keys

Bob use the following steps to select the private and public keys:

1. Bob chooses two very large prime numbers p and q. Remember that a prime num­
ber is one that can be divided evenly only by 1 and itself.

2. Bob multiplies the above two primes to find n, the modulus for encryption and
decryption. In other words, n ::: p X q.

3. Bob calculates another number <1> ::: (p -1) X (q - 1).

4. Bob chooses a random integer e. He then calculates d so that d x e::: 1 mod <1>.

5. Bob announces e and n to the public; he keeps <1> and d secret.

In RSA, e and n are announced to the public; d and <I> are kept secret.
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Encryption

Anyone who needs to send a message to Bob can use nand e. For example, if Alice
needs to send a message to Bob, she can change the message, usually a short one, to an
integer. This is the plaintext. She then calculates the ciphertext, using e and n.

C=pt!(modn)

Alice sends C, the ciphertext, to Bob.

Decryption

Bob keeps <p and d private. When he receives the ciphertext, he uses his private key d to
decrypt the message:

P= Cd(modn)

Restriction

For RSA to work, the value of P must be less than the value of n. IfP is a large number,
the plaintext needs to be divided into blocks to make P less than n.

Example 30.7

Bob chooses 7 and 11 as p and q and calculates n = 7 . 11 = 77. The value of <p = (7 - 1) (11 - 1)
or 60. Now he chooses two keys, e and d. If he chooses e to be 13, then dis 37. Now imagine
Alice sends the plaintext 5 to Bob. She uses the public key 13 to encrypt 5.

Plaintext: 5
C= 513 ;:::: 26 mod 77
Ciphertext: 26

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

Ciphertext: 26
P = 2637 =5 mod 77
Plaintext: 5 Intended m~age sent bY'Alice

The plaintext 5 sent by Alice is received as plaintext 5 by Bob.

Example 30.8

Jennifer creates a pair of keys for herself. She chooses p = 397 and q = 401. She calculates n =
159,197 and <p = 396 . 400 = 158,400. She then chooses e = 343 and d = 12,007. Show how Ted
can send a message to Jennifer if he knows e and n.

Solution
Suppose Ted wants to send the message "NO" to Jennifer. He changes each character to a number
(from 00 to 25) with each character coded as two digits. He then concatenates the two coded
characters and gets a four-digit number. The plaintext is 1314. Ted then uses e and n to encrypt
the message. The ciphertext is 1314343 = 33,677 mod 159,197. Jennifer receives the message
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33,677 and uses the decryption key d to decipher it as 33,67712,007 =1314 mod 159,197. Jennifer
then decodes 1314 as the message "NO". Figure 30.25 shows the process.

Figure 30.25 Example 30.8
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Example 30.9

Let us give a realistic example. We choose a 512-bitp and q. We calculate nand <1>. We then
choose e and test for relative primeness with <I>(n). We calculate d. Finally, we show the results of
encryption and decryption. We have written a program written in Java to do so; this type of calcula­
tion cannot be done by a calculator.

We randomly chose an integer of 512 bits. The integer p is a 159-digit number.

p=96130345313583504574191581280615427909309845594996215822583150879647940
45505647063849125716018034750312098666606492420191808780667421096063354
219926661209

The integer q is a 160-digitnumber.

q= 12060191957231446918276794204450896001555925054637033936061798321731482
14848376465921538945320917522527322683010712069560460251388714552496900
0359660045617

We calculate n. It has 309 digits.

n=11593504I73967614968892509864615887523771457375454144775485526137614788
54083263508172768788159683251684688493006254857641112501624145523391829
27162507656772727460097082714127730434960500556347274566628060099924037
10299142447229221577279853172703383938133469268413732762200096667667183
1831088373420823444370953

We calculate <1>. It has 309 digits:

<1>= 115935041739676149688925098646158875237714~7375454144775485526137614788

54083263~0817276878&159683251684688493OO6254857641112501624145523391829

27162507656751054233608492916752034482627988117554787657013923444405716
98958172819609822636107546721186461217135910735864061400888517026537727
1264467341066243857664128
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We choose e =35,535. We then find d.

e = 35335

d=58oo8302860037763936093661289677917594669062089650962180422866111380593852
82235873170628691003002171085904433840217072986908760061153062025249598844
48047568240966247081485817130463240644077704833134010850947385295645071936
77406119732655742423721761767462077637164207600337085333288532144708859551
36670294831

Alice wants to send the message "THIS IS A TEST" which can be changed to a numeric
value by using the 00-26 encoding scheme (26 is the space character).

P =1907081826081826002619041819

The ciphertext calculated by Alice is C = p e
, which is

c '= 475309123646226827206365550610545J80942371796070491716523239243aS44j~',

60613199328566617843418359114151197411252005682979794571736036101278:21'
8847892741566090480023507190715277185914975188465888632101148354103361
6578984679683867637337657774656250792805211481418440481418443081277305",
9004692874248559166462108656

Bob can recover the plaintext from the ciphertext by using P =Cd, which is

P =: 1907081826081826002619041819

The recovered plaintext is THIS IS A TEST after decoding.

Applications

Although RSA can be used to encrypt and decrypt actual messages, it is very slow if the
message is long. RSA, therefore, is useful for short messages such as a small message
digest (see Chapter 31) or a symmetric key to be used for a symmetric-key cryptosystem.
In particular, we will see that RSA is used in digital signatures and other cryptosystems
that often need to encrypt a small message without having access to a symmetric key.
RSA is also used for authentication as we will see later.

Diffie-Hellman

RSA is a public-key cryptosystem that is often used to encrypt and decrypt symmetric
keys. Diffie-Hellman, on the other hand, was originally designed for key exchange. In the
Diffie-Hellman cryptosystem, two parties create a symmetric session key to exchange
data without having to remember or store the key for future use. They do not have to meet
to agree on the key; it can be done through the Internet. Let us see how the protocol works
when Alice and Bob need a symmetric key to communicate. Before establishing a sym­
metric key, the two parties need to choose two numbers p and g. The first number, p, is a
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large prime number on the order of 300 decimal digits (1024 bits). The second number is
a random number. These two numbers need not be confidential. They can be sent through
the Internet; they can be public.

Procedure

Figure 30.26 shows the procedure. The steps are as follows:

Figure 30.26 Diffie-Hellman method

0,-....,._...

The values of
p and g are public.

Shared secret key
~-.;.,._....

-------------------0-------------------
K=gXY modp

o Step 1: Alice chooses a large random number x and calculates R1 = If mod p.

o Step 2: Bob chooses another large random number y and calculates R2 = gY mod p.

o Step 3: Alice sends R 1 to Bob. Note that Alice does not send the value of x; she
sends only R 1-

o Step 4: Bob sends R2 to Alice. Again, note that Bob does not send the value of y,
he sends only R2.

o Step 5: Alice calculates K = (R2l mod p.

o Step 6: Bob also calculates K = (R1? mod p.

The symmetric key for the session is K.

(.f mod p)Y mod p = (gY mod p)X mod p =.fY mod p

Bob has calculated K = (R 1? mod p = (If mod p? mod p = lfY mod p. Alice has
calculated K =(R2)X mod p =(gY mod p)X mod =lfY mod p. Both have reached the same
value without Bob knowing the value of x and without Alice knowing the value of y.

The symmetric (shared) key in the Diffie-Hellman protocol is
K=!tYmodp.
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Example 30.10

Let us give a trivial example to make the procedure clear. Our example uses small num­
bers, but note that in a real situation, the numbers are very large. Assume g =7 and p =23.
The steps are as follows:

1. Alice chooses x = 3 and calculates R 1 = 73 mod 23 = 21.

2. Bob chooses y = 6 and calculates R2 = 76 mod 23 = 4.

3. Alice sends the number 21 to Bob.

4. Bob sends the number 4 to Alice.

5. Alice calculates the symmetric key K =43 mod 23 = 18.

6. Bob calculates the symmetric key K = 21 6 mod 23 = 18.

The value of K is the same for both Alice and Bob; EfY mod p = 718 mod 23 = 18.

Idea ofDiffie-Hellman

The Diffie-Hellman concept, shown in Figure 30.27, is simple but elegant. We can think
of the secret key between Alice and Bob as made of three parts: g, x, and y. The first part
is public. Everyone knows one-third of the key; g is a public value. The other two parts
must be added by Alice and Bob. Each adds one part. Alice adds x as the second part for
Bob; Bob adds y as the second part for Alice. When Alice receives the two-thirds com­
pleted key from Bob, she adds the last part, her x, to complete the key. When Bob receives
the two-thirds completed key from Alice, he adds the last part, his y, to complete the key.
Note that although the key in Alice's hand consists of g-y-x and the key in Bob's hand is
g-x-y, these two keys are the same because EfY =gYx.

Figure 30.27 Diffie-Hellman idea
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Note also that although the two keys are the same, Alice cannot find the value y used by
Bob because the calculation is done in modulo p; Alice receives gY mod p from Bob, not gY.

Man-in-the-Middle Attack

Diffie-Hellman is a very sophisticated symmetric-key creation algorithm. If x and y are
very large numbers, it is extremely difficult for Eve to find the key, knowing only p and
g. An intruder needs to determine x and y if R1 and R2 are intercepted. But finding x
from R 1 and y from R2 are two difficult tasks. Even a sophisticated computer would
need perhaps years to find the key by trying different numbers. In addition, Alice and
Bob will change the key the next time they need to communicate.

However, the protocol does have a weakness. Eve does not have to find the value of
x and y to attack the protocol. She can fool Alice and Bob by creating two keys: one
between herself and Alice and another between herself and Bob. Figure 30.28 shows
the situation.

Figure 30.28 Man-in-the-middle attack
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The following can happen:

1. Alice chooses x, calculates R1 = gX mod p, and sends R1 to Bob.

2. Eve, the intruder, intercepts Rl' She chooses z, calculates R2 =Ef mod p, and sends
R2 to both Alice and Bob.
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3. Bob chooses y, calculates R3 = gY mod p, and sends R3 to Alice; R3 is intercepted
by Eve and never reaches Alice.

4. Alice and Eve calculate K I =Etz mod p, which becomes a shared key between Alice
and Eve. Alice, however, thinks that it is a key shared between Bob and herself.

5. Eve and Bob calculate K2 = gZY mod p, which becomes a shared key between Eve
and Bob. Bob, however, thinks that it is a key shared between Alice and himself.

In other words, two keys, instead of one, are created: one between Alice and Eve and
one between Eve and Bob. When Alice sends data to Bob encrypted with K1 (shared by
Alice and Eve), it can be deciphered and read by Eve. Eve can send the message to Bob
encrypted by K2 (shared key between Eve and Bob); or she can even change the mes­
sage or send a totally new message. Bob is fooled into believing that the message has
come from Alice. A similar scenario can happen to Alice in the other direction.

This situation is called a man-in-the-middle attack because Eve comes in between
and intercepts R I , sent by Alice to Bob, and R3, sent by Bob to Alice. It is also known
as a bucket brigade attack because it resembles a short line of volunteers passing a
bucket of water from person to person.

Authentication

The man-in-the-middle attack can be avoided if Bob and Alice first authenticate each
other. In other words, the exchange key process can be combined with an authentication
scheme to prevent a man-in-the-middle attack. We discuss authentication in Chapter 31.

30.4 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books. The items in brackets [...] refer to the reference list at the end of the text.

Books

Cryptography can be found in many books dedicated to the subject such as [Bar02],
[GartH], [Sti02], [Mao04], [MOV97], and [Sch96].

30.5 KEY TERMS
Advanced Encryption Standard (AES)

block cipher

bucket brigade attack

Caesar cipher

cipher block chaining (CBC) mode

cipher feedback (CFB) mode

ciphertext

compression permutation

cryptography

Data Encryption Standard (DES)

decryption

decryption algorithm

DES function

Diffie-Hellman cryptosystem

electronic code book (ECB) mode

encryption



encryption algorithm

expansion permutation

initiation vector (IV)

key

man-in-the-middle attack

mode of operation

monoalphabetic cipher

National Institute of Standards and
Technology (NIST)

output feedback (OFB) mode

P-box

plaintext

polyalphabetic cipher

private key

public key
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Rijndael algorithm

Rivest, Shamir, Adleman (RSA)

rotation cipher

round

round cipher

S-box

secret key

session key

shift cipher

simple cipher

straight permutation

substitution cipher

transposition cipher

Triple DES

XORcipher

30.6 SUMMARY
o Cryptography is the science and art of transforming messages to make them secure

and immune to attacks.

o The plaintext is the original message before transformation; the ciphertext is the
message after transformation.

o An encryption algorithm transforms plaintext to ciphertext; a decryption algorithm
transforms ciphertext to plaintext.

o A combination of an encryption algorithm and a decryption algorithm is called a
cipher.

o The key is a number or a set of numbers on which the cipher operates.

o We can divide all ciphers into two broad categories: symmetric-key ciphers and
asymmetric-key ciphers.

o In a symmetric-key cipher, the same key is used by both the sender and receiver. The
key is called the secret key.

o In an asymmetric-key cipher, a pair of keys is used. The sender uses the public key;
the receiver uses the private key.

o A substitution cipher replaces one character with another character.

o Substitution ciphers can be categorized into two broad categories: monoalphabetic
and polyalphabetic.

o The shift cipher is the simplest monoalphabetic cipher. It uses modular arithmetic
with a modulus of 26. The Caesar cipher is a shift cipher that has a key of 3.

o The transposition cipher reorders the plaintext characters to create a ciphertext.

o An XOR cipher is the simplest cipher which is self-invertible.

o A rotation cipher is an invertible cipher.
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o An S-box is a keyless substitution cipher with N inputs and M outputs that uses a
formula to define the relationship between the input stream and the output stream.

o A P-box is a keyless transposition cipher with N inputs and M outputs that uses a
table to define the relationship between the input stream and the output stream. A
P-box is invertible only if the numbers of inputs and outputs are the same. A P-box can
use a straight permutation, a compression peilliutation, or an expansion permutation.

o A modern cipher is usually a round cipher; each round is a complex cipher made of
a combination of different simple ciphers.

o DES is a symmetric-key method adopted by the U.S. government. DES has an initial
and final permutation block and 16 rounds.

o The heart of DES is the DES function. The DES function has four components: an
expansion permutation, an XOR operation, S-boxes, and a straight permutation.

o DES uses a key generator to generate sixteen 48-bit round keys.

o Triple DES was designed to increase the size of the DES key (effectively 56 bits)
for better security.

o AES is a round cipher based on the Rijndael algorithm that uses a 128-bit block of
data. AES has three different configurations: 10 rounds with a key size of 128 bits,
12 rounds with a key size of 192 bits, and 14 rounds with a key size of 256 bits.

o Mode of operation refers to techniques that deploy the ciphers such as DES or AES.
Four common modes of operation are ECB, CBC, CBF, and OFB. ECB and CBC
are block ciphers; CBF and OFB are stream ciphers.

o One commonly used public-key cryptography method is the RSA algorithm,
invented by Rivest, Shamir, and Adleman.

o RSA chooses n to be the product of two primes p and q.

o The Diffie-Hellman method provides a one-time session key for two parties.

o The man-in-the-middle attack can endanger the security of the Diffie-Hellman
method if two parties are not authenticated to each other.

30.7 PRACTICE SET

Review Questions

1. In symmetric-key cryptography, how many keys are needed if Alice and Bob want
to communicate with each other?

2. In symmetric-key cryptography, can Alice use the same key to communicate with
both Bob and John? Explain your answer.

3. In symmetric-key cryptography, if every person in a group of 10 people needs to
communicate with every other person in another group of 10 people, how many
secret keys are needed?

4. In symmetric-key cryptography, if every person in a group of 10 people needs to com­
municate with every other person in the group, how many secret keys are needed?

5. Repeat Question 1 for asymmetric-key cryptography.
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6. Repeat Question 2 for asymmetric-key cryptography.

7. Repeat Question 3 for asymmetric-key cryptography.

8. Repeat Question 4 for asymmetric-key cryptography.

Exercises

9. In symmetric-key cryptography, how do you think two persons can establish a secret
key between themselves?

10. In asymmetric-key cryptography, how do you think two persons can establish two
pairs of keys between themselves?

11. Encrypt the message "THIS IS AN EXERCISE" using a shift cipher with a key of 20.
Ignore the space between words. Decrypt the message to get the original plaintext.

12. Can we use monoalphabetic substitution if our symbols are just 0 and I? Is it a
good idea?

13. Can we use polyalphabetic substitution if our symbols are just 0 and I? Is it a good
idea?

14. Encrypt "INTERNET" using a transposition cipher with the following key:

35214
1 2 345

15. Rotate 11100I three bits to the right.

16. Rotate 100111 three bits to the left.

17. A 6-by-2 S-box adds the bits at the odd-numbered positions (1, 3, 5, ...) to get the
right bit of the output and adds the bits at the even-numbered positions (2,4,6, ...)
to get the left bit of the output. If the input is 1100I0, what is the output? If the
input is 10110I, what is the output? Assume the rightmost bit is bit I.

18. What are all the possible number combinations of inputs in a 6-by-2 S-box? What
is the possible number of outputs?

19. The leftmost bit of a 4-by-3 S-box rotates the other 3 bits. If the leftmost bit is 0,
the 3 other bits are rotated to the right 1 bit. If the leftmost bit is I, the 3 other bits
are rotated to the left I bit. If the input is 10II, what is the output? If the input is
0110, what is the output?

20. A P-box uses the following table for encryption. Show the box and connect the input
to the output.

4 2,

1
3
2

1.

Is the P-box straight, compression, or expansion?

21. In RSA, given two prime numbers p =19 and q =23, find nand <p. Choose e =5 and
try to find d, such that e and d meet the criteria.

22. To understand the security of the RSA algorithm, find d if you know that e = 17 and
n = 187. This exercise proves how easy is for Eve to break the secret if n is small.



960 CHAPTER 30 CRYPTOGRAPHY

23. For the RSA algorithm with a large n, explain why Bob can calculate d from n, but
Eve cannot.

24. Using e = 13, d = 37, and n = 77 in the RSA algorithm, encrypt the message "FINE"
using the values of 00 to 25 for letters A to Z. For simplicity, do the encryption and
decryption character by character.

25. Why can't Bob choose 1 as the public key e in RSA?

26. What is the danger in choosing 2 as the public key e in RSA?

27. Eve uses RSA to send a message to Bob, using Bob's public key. Later, at a cock­
tail party, Eve sees Bob and asks him if the message has arrived and Bob confirms
it. After a few drinks, Eve asks Bob, "What was the ciphertext?" Bob gives the
value of the ciphertext to Eve. Can this endanger the security of Bob's private key?
Explain your answer.

28. What is the value of the symmetric key in the Diffie-Hellman protocol if g = 7,p = 23,
x = 2, and y = 5?

29. In the Diffie-Hellman protocol, what happens if x and y have the same value? That
is, Alice and Bob have accidentally chosen the same number. Are the values of R1

and R2 the same? Are the values of the session keys calculated by Alice and Bob
the same? Use an example to prove your claims.

Research Activities

30. Another asymmetric-key algorithm is called EIGamal. Do some research and find
out some information about this algorithm. What is the difference between RSA
and EIGamal?

31. Another asymmetric-key algorithm is based on elliptic curves. If you are familiar
with elliptic curves, do some research and find the algorithms based on elliptic
curves.

32. To make Diffie-Helman algorithm more robust, one uses cookies. Do some research
and find out about the use of cookies in the Diffie-Helman algorithm.


